Приборы для измерений магнитной индукции и напряженности магнитного поля. Индукционные преобразователи для измерения параметров магнит­ных полей Назначение и область применения

Тесламетр - магнитоизмерительный прибор для измерения магнитной индукции, шкала которого градуирована в единицах магнитной индукции - теслах.

Магнитоизмерительным преобразователем в рассматриваемом приборе является гальваномагнитный преобразователь Холла, в котором под действием магнитного поля возникает ЭДС.

К гальваномагнитным относится также магниторезистивный преобразователь, в котором используется изменение его электрического сопротивления в магнитном поле.

Принцип действия тесламетра с преобразователем Холла поясняется рис. 10-3, где ПХ - преобразователь Холла; У - усилитель.

Преобразователь представляет собой пластину из полупроводника, по которой протекает ток При помещении пластины в магнитное поле, вектор магнитной индукции В которого перпендикулярен плоскости пластины, на боковых гранях ее возникает разность потенциалов - ЭДС Холла

где С - постоянная, зависящая от свойств материала и размеров пластины; I - сила тока; В - магнитная индукция.

После усиления ЭДС Холла измеряется компенсатором постоянного тока или милливольтметром шкала которого может быть градуирована в единицах магнитного потока при условии постоянства силы тока.

Тесламетры с преобразователем Холла просты в эксплуатации, позволяют измерять магнитную индукцию или напряженность постоянных, переменных (в широком диапазоне частот) и импульсных магнитных полей. Преобразователи Холла имеют малые размеры, что позволяет проводить измерение индукции в малых зазорах.

Выпускаемые промышленностью тесламетры с преобразователем Холла имеют более сложные схемы. У серийных тесламетров с преобразователями Холла верхние пределы измерений от до основная приведенная погрешность

Ферромодуляционные тесламетры.

В них используются ферромодуляционные преобразователи (феррозонды), принцип работы которых основан на особенностях изменения магнитного состояния ферромагнитного сердечника при одновременном воздействии на него переменного и постоянного магнитных полей (либо двух переменных полей различных частот) и явления электромагнитной индукции.

Существует много разновидностей ферромодуляционных преобразователей. Наиболее распространенным видом является дифференциальный ферромодуляционный преобразователь.

На рис. 10-4 приведена схема ферромодуляционного тесламетра, в котором имеет место уравновешивающее

Рис. 10-3. Схема тесламетра с преобразователем Холла

Рис. 10-4. Схема ферромодуляционного тесламетра

преобразование с компенсацией (уравновешиванием) магнитной индукции (напряженности) измеряемого магнитного поля.

Дифференциальный ферромодуляционный преобразозатель ФМП состоит из двух идентичных по размерам и свойствам пермаллоевых сердечников С, одинаковых, включенных встречно, обмоток возбуждения которые питаются переменным током от генератора Г.

Оба сердечника охватывает индикаторная обмотка При отсутствии постоянного поля ЭДС на зажимах индикаторной обмотки равна нулю, так как потоки, создаваемые обмотками одинаковы и направлены встречно. Если на переменное поле (поле возбуждения) наложить постоянное поле (измеряемое) вектор которого параллелен оси сердечника, то кривая переменной составляющей индукции В станет несимметричной относительно оси времени, т. е. в составе этой кривой наряду с нечетными появятся четные гармоники, причем степень асимметрии зависит от значения Значение ЭДС четных гармоник, индуцированной в индикаторной обмотке, в частности ЭДС второй гармоники, зависит от значения напряженности или магнитной индукции постоянного (измеряемого) магнитного поля.

Электродвижущая сила второй гармоники является линейной функцией составляющей магнитной индукции (или напряженности) постоянного магнитного поля, параллельной оси преобразователя, т. е.

где и - коэффициенты преобразования, зависящие от параметров ферромодуляционного преобразователя, частоты и значения напряженности поля возбуждения; - измеряемая магнитная индукция; - напряженность магнитного поля.

Выходной сигнал индикаторной обмотки (ЭДС четных гармоник) поступает на вход избирательного усилителя усиливающего вторую гармонику, затем синхронный выпрямитель синхронизируемый генератором Г. Синхронный выпрямитель преобразует ЭДС второй гармоники в пропорциональный ей, а следовательно, и измеряемой постоянный ток который протекает через обмотку обратной связи размещаемую на ферромодуляционном преобразователе и создающую компенсирующее поле с индукцией Благодаря уравновешивающему преобразованию устанавливается такая сила тока чтобы поле с индукцией стало равным по значению и обратным по направлению измеряемому с индукцией т. е. происходит автоматическая компенсация измеряемого поля компенсационным Миллиамперметр, включенный в цепь обмотки обратной связи, градуируют в единицах измеряемой величины - теслах или амперах на метр.

Приборы с ферромодуляционными преобразователями обладают высокой чувствительностью, высокой точностью измерения, позволяют вести непрерывные измерения, что обусловило их широкое распространение (в частности, для измерения магнитного поля Земли).

Ферромодуляционные тесламетры используют для измерения магнитной индукции (или напряженности магнитного поля) в малых постоянных и низкочастотных переменных магнитных полях.

Диапазон измерений такими приборами лежит в пределах от до погрешность измерения от 1,0 до 5 %.

В настоящее время находят все более широкое применение цифровые ферромодуляционные тесламетры, которые имеют повышенную точность и быстродействие.

Ядерно-резонансные тесламетры.

В этих тесламетрах используется разновидность квантового магнитоизмерительного преобразователя. Квантовыми называют магнитоизмерительные преобразователи, действие которых основано на взаимодействии микрочастиц (атомов, ядер атомов, электронов) с магнитным полем.

Существует несколько разновидностей квантовых преобразователей. Рассмотрим принцип действия одного из них - ядерно-резонансного преобразователя, позволяющего измерять магнитную индукцию с высокой точностью.

Ядерно-резонансный преобразователь действует следующим образом. Ядра атомов вещества, обладающие не только моментом количества движения, но и магнитным моментом, при помещении во внешнее магнитное поле начинают прецессировать вокруг вектора магнитной индукции внешнего поля.

Частота прецессии ядер атомов вещества связана с магнитной индукцией В внешнего поля соотношением

где у - гиромагнитное отношение (отношение магнитного момента ядра атома к моменту количества движения).

Следовательно, измерив частоту прецессии, можно определить значение магнитной индукции. Гиромагнитное отношение определено для ядер атомов некоторых веществ с высокой точностью (например, для ядер водорода погрешность составляет Измерение частоты может быть выполнено с погрешностью, не превышающей Таким образом, рассматриваемый преобразователь может обеспечить измерение магнитной индукции с высокой точностью.

Для измерения частоты прецессии используют различные методы. Один из них основан на явлении ядерного магнитного резонанса.

Упрощенная структурная схема прибора, в котором использовано явление ядерного магнитного резонанса, приведена на рис. 10-5, где ЯРП - ядсрно-резонансный преобразователь, состоящий из ампулы Л с рабочим веществом (например, водный раствор и охватывающей ее катушки - генератор высокой частоты; - генератор низкой частоты; - модуляционная катушка; В - выпрямитель; - электронный осциллограф; - частотомер.

Если на измеряемое постоянное поле наложить под углом 90° переменное поле частоту которого можно плавно изменять, то при совпадении частоты прецессии с частотой переменного поля будет наблюдаться явление ядерного магнитного резонанса - амплитуда прецессии возрастет и достигнет максимального значения. Увеличение амплитуды прецессии сопровождается поглощением ядрами вещества части энергии высокочастотного поля, что приводит к изменению добротности катушки, а следовательно, и к изменению напряжения на ее концах (катушка К является элементом колебательного контура генератора Для того чтобы иметь возможность наблюдать это изменение на экране осциллографа, необходимо создать условия для его периодического повторения, что достигается путем модуляции измеряемой магнитной индукции с помощью катушки питаемой током низкой частоты от генератора Момент резонанса (равенство частот прецессии и напряжения генератора может быть зафиксировано с помощью электронного осциллографа, на

Рис. 10-5. Схема ядерно-резонансиого тесламетра

вертикальный вход которого подают после выпрямления напряжение с катушки на горизонтальный - напряжение модуляции (напряжение ГНЧ). Резонансная кривая наблюдается на экране осциллографа два раза за период модуляции. Частота прецессии определяется путем измерения частоты генератора ГВЧ в момент резонанса.

Ядерно-резонансные тесламетры имеют диапазон измерений основная приведенная погрешность для различных приборов находится в пределах

Ядерно-резонансные тесламетры в сочетании со специальными преобразователями силы тока в напряженность магнитного поля применяют для измерения больших токов с высокой точностью.

В последние годы для создания магнитоизмерительных приборов используют явление сверхпроводимости, которое в сочетании с эффектами Мейснера, Джозефсона и др. позволяет создавать приборы уникальной чувствительности, высокой точности и быстродействия.

Рассмотрим принцип действия одного из таких приборов. Магнитоизмерительный преобразователь представляет собой сплошной цилиндр из сверхпроводящего материала, на который намотана обмотка. На цилиндре, помещенном в измеряемое магнитное поле, имеется нагреватель, который обеспечивает периодический, с частотой 1 МГц, нагрев и охлаждение его до температуры больше или меньше критической для данного сверхпроводящего материала. Это приводит к периодическому выталкиванию измеряемого магнитного потока (эффект Мейснера) из объема цилиндра, а следовательно, и изменению потокосцепления его с обмоткой. В результате в обмотке возникает ЭДС, пропорциональная частоте тока нагревателя, числу витков катушки, сечению цилиндра и напряженности измеряемого магнитного поля (измеряется составляющая поля, совпадающая с направлением оси цилиндра).

Прибор состоит из преобразователя, криостата и электронного измерительного устройства, служащего для выделения и измерения ЭДС.

С помощью сверхпроводниковых тесламетров были измерены параметры магнитного поля биотоков сердца и мозга человека

Характеристики серийно выпускаемых тесламетров приведены в табл. 15-9.

Основные направления развития магнитоизмерительных приборов: повышение точности, чувствительности и расширение

функциональных возможностей путем применения новых физических явлений, новых материалов и технологий изготовления магнитоизмерительных преобразователей, а также путем использования средств вычислительной техники и т. п.

Для измерения магнитной индукции переменного магнит­ного поля применяются преобразователи со стационарными (непо­движными) обмотками. Функция преобразования преобразователя соот­ветствует уравнению (4). Коэффициент преобразования, связываю­щий действующее значение индуктируемой ЭДС с амплитудным значением индукции периодически симметрично меняющегося магнит­ного поля, определяется выражением

(9)

где - коэффициент формы кривой;

- частота переменного маг­нитного поля.

При искаженной форме кривой обычно измеряют сред­нее значение индуктируемой ЭДС
.

Для измерения индукции постоянного магнитного поля могут быть использованы как преобразователи с условно стационарной обмоткой, так и преобразователи с принудительным движением обмотки. В пре­образователях со стационарной обмоткой изменение магнитного по­тока, сцепляющегося с витками обмотки, может происходить в ре­зультате изменения самого измеряемого поля, например при измере­ниях магнитного поля, вызываемого включением какого-то агрегата, или в результате однократного изменения положения самого преоб­разователя - удаления преобразователя из магнитного поля или поворота в поле на 90 или 180°.

Выходным сигналом такого преобразователя является импульс тока или импульс ЭДС, которые возникают при изменении полного магнитного потока. Изменение потока
связано с ЭДС и током как


; (10)

где - полное сопротивление измерительной цепи с учетом сопро­тивления преобразователя;

Q - количество электричества.

В качестве интеграторов используются баллистический гальвано­метр (при интегрировании тока) или магнитоэлектрические, фотогальванометрические и электронные веберметры с операционными усилителями, применяемые для интегрирования ЭДС.

Индукционные преобразователи для измерения параметров маг­нитных полей в воздушном пространстве обычно выполняются в виде измерительных катушек различной формы, начало и конец обмотки которых находятся в одном месте, чтобы не создавались дополнитель­ные контуры за счет подводящих проводов.

в)

a)
б)

Для измерения напряженности магнитного поля при испытании ферромагнитных материалов используются плоские измерительные катушки (рис. 1, а), помещаемые на поверхности испытуемого образца; при этом измеренная в воздухе напряженность поля

прини­мается равной напряженности поля на поверхности образца.

Для измерения магнитной индукции и напряженности неоднород­ных магнитных полей целесообразно использовать шаровые индук­ционные преобразователи (рис.1, б). Магнитный

поток, сцепляю­щийся с такой катушкой, равен

, (11)

где В 0 - индукция в центре преобразователя;

r - радиус сферы;

w - число витков на единицу длины оси zz ", которая должна совпадать с вектором В 0 .

Для измерения МДС используются индукционные преобразова­тели, называемые магнитными потенциалометрами, обычно выполняе­мые в виде равнoмерной обмотки на гибком изоляционном каркасе. Обмотка выполняется с четным числом слоев так, чтобы выводы нахо­дились в середине обмотки (рис. 1, в). Магнитный потенциалометр помещается в магнитное поле таким образом, чтобы его концы находи­лись в точках А и В, между которыми измеряется МДС. Магнитный поток, сцепляющийся с витками потенциалометра, равен


(12)

Порог чувствительности средств измерений со стационарными индукционными преобразователями определяется главным образом механическими помехами (вибрации, сейсмические и акустические воз­действия), которые приводят к колебаниям преобразователя и наве­дению дополнительной ЭДС, а также дрейфом интегрирующего выход­ного преобразователя. Наиболее чувствительные магнитоэлектрические веберметры имеют цену деления 5*10Вб, а фотогальванометрические веберметры - 4*10 Вб.

Индукционные преобразователи с вращающимися или вибрирую­щими чувствительными элементами имеют функции преобразования, которым соответствуют уравнения (5 – 7).

На (рис. 2, а ) показана схема -преобразователя (так называе­мого измерительного генератора), который состоит из рамки 1 с числом витков и вращается при помощи двигателя 2 c угловой частотой

; (13)

где - угол между магнитной осью преобразователя и поперечной компонентой

вектора магнитной индукции
,
где - угол между осью вращения преобразователя и вектором.

Рис.2.

При " = 1 из уравнения (5) получаем


; (14)

Учитывая, что
имеем

Коэффициент преобразования преобразователя

(16)

где Е т - амплитудное значение генерируемой ЭДС.

Преобразователи с вращающейся катушкой отличаются высокой чувствительностью (до 300 В/Тл). Порог чувствительности ограничен уровнем шума коллектора и наводками от электродвигателя и цепи питания. Для снижения порога чувствительности используются бес­коллекторные токосъемы, а вращение генератора осуществляется через редуктор, с тем чтобы частота выходного сигнала отличалась от часто­ты сети и не была кратной частоте вращения двигателя.

На (рис. 2, б) изображен четногармонический преобразователь. В качестве вращающегося элемента используется короткозамкнутое кольцо 1, которое вращается двигателем 2 в неподвижной обмотке 3. Магнитное поле, создаваемое током, индуктированным в короткозамкнутом кольце при его вращении во внешнем поле с индукцией В 0 , изменяется с одинаковой частотой как по модулю, так и по направле­нию. Вследствие этого проекция вектора магнитной индукции поля на ось неподвижной обмотки, совпадающей с вектором измеряемой магнитной индукции В, будет изменяться пропорционально
. Суммарный поток, пронизывающий неподвижную катушку (активным сопротивлением кольца пренебрегаем), равен

и ЭДС, наводимая в неподвижной обмотке,

; (18)

Разнесение частот напряжения питания и полезного сигнала позво­ляет отфильтровать

наводки и создать на рассмотренном принципе индукционные преобразователи с порогом

чувствительности
Тл.

На (рис.2, в) показан S-преобразователь с радиальными коле­баниями, возбуждаемыми электрострикционным вибратором. Вибра­тором является тонкостенный цилиндр 1 из сегнетокерамики PbZrO 3 с металлизированными внутренней 2 и внешней 3 поверхностями, куда подводится переменное управляющее напряжение U f . Внутренний электрод имеет продольный разрез 4, а внешний представляет собой короткозамкнутый виток, на котором находится вторичная многовитковая обмотка 5. Вследствие радиальных электрострикционных колебаний периодически изменяется площадь поперечного сечения короткозамкнутого витка, и при наличии постоянного магнитного поля, вектор магнитной индукции которого направлен по оси цилиндра, в наруж­ном короткозамкнутом витке возникает переменный ток, который вы­зывает во вторичной обмотке ЭДС, пропорциональную индукции .Частота электрострикционных колебаний и выходной ЭДС равна удво­енной частоте управляющего напряжения.

Измерение магнитной индукции и напряженности магнитного поля в постоянных и переменных полях выполняются с помощью тесламетров с преобразователями Холла . При помещении такого преобразователя в магнитное поле на боковых его гранях генерируется ЭДС.

Выпускаемые промышленностью тесламетры данного типа предназначены для измерений магнитной индукции в пределах 0,002…2 Т, с частотным диапазоном до 1 ГГц. К их достоинствам можно отнести простоту конструкции, удобство в эксплуатации, высокие метрологические характеристики. Недостатки: показания прибора зависят от температуры.

В ядерно-резонансных тесламетрах в качестве преобразователя применяется разновидность квантового магнитоизмерительного преобразователя, действие которого основано на взаимодействии атомов, ядер атомов с магнитным полем. Диапазон измерения таких устройств достигает 10Т при классе точности измерений в пределах 0,001…0,1.

Ферромодуляционные тесламетры предназначены малых постоянных и переменных низкочастотных магнитных полей. Принцип их работы основан на явлении сверхпроводимости и позволяет производить измерения магнитного поля, создаваемого биотоками сердца, мозга человека. Напряженность магнитного поля в таких устройствах измеряют электродинамическим способом, основанным на взаимодействии тока, протекающего по рамке, с измеряемым магнитным полем. О значении напряженности поля судят по углу отклонения рамки, помещенной в измеряемое магнитное поле, при неизменном значении тока в ней.

Магнитные материалы делят на три группы: магнитомягкие; магнитотвердые; материалы со специальными свойствами. Статические и динамические характеристики магнитных материалов и методы их определения регламентируются соответствующими ГОСТами и стандартами.

Аппаратура для определения характеристик и параметров магнитных материалов состоит из намагничивающих и измерительных обмоток, средств измерения, регистрации, обработки полученной информации и различных вспомогательных устройств. В промышленных установках для определения статических характеристик магнитных материалов определяют индукцию с помощью индукционно-импульсного метода, а напряженность поля косвенно по силе тока в намагничивающей катушке и ее параметрам или с помощью магнитоизмерительных приборов. В установках для определения динамических характеристик магнитных материалов обычно используют индукционный магнитоизмерительный преобразователь и различные способы измерения его выходного сигнала.

Испытание магнитных материалов стремятся проводить при равномерном намагничивании материала, когда индукция в различных сечениях образца одинакова. Для испытания магнитного материала в замкнутой магнитной цепи используют образцы в виде кольца, что обеспечивает наибольшую точность измерения. Но изготовление таких образцов – сложное дело, поэтому гораздо проще испытывать образцы материалов в виде полос, стержней с помощью специальных устройств – пермеаметров.

Основные статические характеристики материалов определяются в постоянных магнитных полях и позволяют отличать один материал от другого. К ним относятся: основная кривая намагничивания и петля гистерезисного цикла, площадь которой пропорциональна энергии, затрачиваемой на перемагничивание, а точки пересечения с осями координат позволяют определить основные магнитные характеристики материалов. Наиболее распространенный способ определения статических характеристик – индукционно-импульсный метод с использованием баллистического гальванометра и веберметра.

Динамические характеристики зависят не только от качества самого материала, но и от формы и размеров образца, формы кривой и частоты намагничивающего поля. Динамическая петля гистерезиса и ее площадь определяют полную энергию, рассеиваемую за цикл перемагничивания, т.е. потери за счет гистерезисных явлений, вихревых токов, магнитной вязкости и т.п. Семейство динамических петель характеризует магнитный материал при данных размерах образца, форме и частоте магнитного поля. Геометрическое место вершины динамических петель является динамической кривой намагничивания. Важными параметрами магнитных материалов в переменных магнитных полях являются различные виды магнитной проницаемости.


Приборы для измерения магнитной индукции и напряженности магнитного поля (далее - МП ) называются тесламетрами (Тм) , по аналогии с измеряемой величиной. Процесс измерения магнитных величин более сложный, чем определение электрических величин, соответственно и приборы и схемы тоже сложнее.

Наиболее распространенными магнитоизмерительными приборами для определения индукции и напряженности являются: Тм с преобразователем Холла, ферромодуляционный и ядерно-резонансный тесламетр.


Тм с преобразователем Холла определяют параметры средних (от 10-5 до 10-1 Тл) и сильных (10-1 до102 Тл) МП . Принцип работы таких тесламетров основан на появлении ЭДС в полупроводниках, помещенных в зону влияния МП .

При этом вектор магнитной индукции искомого МП должен быть перпендикулярен пластине полупроводника.

Через тело полупроводника протекает электрический ток I . В результате на боковых гранях пластины образуется разность потенциалов, которую называют ЭДС Холла. ЭДС определяется компенсационным методом или милливольтметром, шкала которого градуирована в теслах. На практике ЭДС Холла зависит от следующих параметров:

Ех=С*I*B;

где С – коэффициент, учитывающий конструктивные параметры пластины полупроводника;
I – сила тока, А;
В – магнитная индукция, Тл.

Зная силу тока I , коэффициент С и значение Ех , прибор градуируют в единицах измерения МП , при условии, что сила тока постоянна.

Тм с преобразователем Холла просты в применении, имеют небольшие размеры, что позволяет применять их при измерениях в малых зазорах. С их помощью определяют параметры постоянных, переменных и импульсных полей.

Пределы измерения обычного прибора от 2*10-3 до 2 Тл, с относительной погрешностью ±1,5–2,5%.


Вторым видом приборов для определения характеристик МП является ферромодуляционный тесламетр (ФМТ) . Используют ФМТ для измерения слабых и средних, постоянных и переменных (до 1кГц) МП .

В основу работы ФМТ заложено свойство пермаллоевых сердечников С, изменять свое магнитное состояние, при одновременном воздействии на них постоянного и переменного МП .

Наиболее широкое применение в схеме измерения рис.2 нашли дифференциальные ферромодуляционные преобразователи. Генератор Г служит для создания переменного МП , которое посредствам катушек ω влияет на сердечники С.

В связи с тем, что эти катушки включены встречно, т. е. конец одной совпадает с другой, ЭДС в цепи индикаторной катушки ωи отсутствует.

Если внести сердечники С в постоянное МП (измеряемое поле), так чтобы вектор магнитной индукции был параллелен оси сердечников, в измерительной обмотке появится ЭДС. Это явление происходит благодаря физическим свойствам пермаллоя, изменять свое магнитное состояние под воздействием двух разнородных полей.

Итак, под влиянием поля В_ , на входе избирательного усилителя ИУ, на ряду с нечетными гармониками, появятся четные. В частности ЭДС второй гармоники имеет прямую зависимость от напряженности МП Н и магнитной индукции В_ .

Е2 ≈ kH;
E2 ≈ k1B .

где k и k1 – коэффициенты, учитывающие конструкционные особенности сердечников, частоту и напряженность поля возбуждения ω;
Н – измеряемая напряженность МП ;
В_ - измеряемая индукция.

Синхронный выпрямитель получает с выхода ИУ усиленный сигнал ЭДС второй гармоники, преобразует ЭДС в пропорциональный ей (а значит и Н и В_ ) ток компенсации .

Ток компенсации, протекая по компенсирующим обмоткам ωк , создает компенсирующее поле Вк , которое стремится уравновеситься с В_, и имеет встречное направление. Миллиамперметр, по которому также протекает ток , градуирован в теслах.

Ферромодуляционные тесламетры имеют высокую чувствительность, точность, и могут быть использованы для непрерывных измерений параметров магнитного поля. Пределы измерения ФМТ от 10-6 до 1 мТл, с погрешностью от 1 до 5%.

Тесламетры с квантовыми магнитоизмерительными преобразователями используют для измерения средних и слабых МП , постоянных и переменных частотой до 20 кГц полей. Принцип действия квантовых магнитоизмерительных преобразователей заключается во взаимодействии ядер молекул вещества с МП .

На рис.3 представлена схема распространенного ядерно-резонансного преобразователя. В колбе находится рабочее вещество. По средствам генератора высокой частоты ГВЧ и катушки, охватывающей витками колбу, к рабочему веществу приложено переменное МП .

Взаимодействие ядер с МП называется прецессией. Итак, в колбе частицы прецессируют вокруг вектора магнитной индукции переменного поля.

Под прямым углом, на колбу с рабочим веществом, начинает действовать измеряемое постоянное МП В_ . Плавно изменяя частоту переменного поля, добиваются ядерного магнитного резонанса – совпадения частоты прецессии с частотой переменного поля. Резонанс заключается в увеличении амплитуды прецессии.

Этот процесс сопровождается поглощением части энергии переменного ВЧ поля, что приводит к изменению добротности катушки, а соответственно и изменению напряжения на ее концах.

Явление резонанса можно наблюдать на экране электронного осциллографа ЭО, на горизонтальный вход которого подается напряжение ГНЧ, а на вертикальный – выпрямленное напряжение рабочей катушки. ГНЧ питает током низкой частоты катушку модуляции Км, которая служит для модуляции магнитной индукции В_ .

Ядерно-резонансные тесламетры являются самыми точными, их относительная погрешность составляет 0,001–0,1%, в области значений 10-2–10 Тл.


  • Переносной прибор с автономным питанием.
  • Зонд специальной конструкции для измерений на магнитных системах сепараторов (и на отдельных магнитах).
  • Простая настройка на измерение.
  • Широкий диапазон измерений.
  • Быстрое и удобное считывание показаний.
  • Высокая надежность в эксплуатации.
  • Пылевзрывобезопасное исполнение.

Для измерения нормальной составляющей магнитной индукции у поверхности полюсов постоянных магнитов, одиночных или собранных в блоки магнитных сепараторов. Диапазон измерения магнитной индукции постоянных магнитных полей от 0 до 500 мТл. Погрешность не более 2,5%.

Миллитесламетр ИМИ-М предназначен для измерения индукции магнитных и электромагнитных сепараторах и колонках.

Принцип работы измерителя ИМИ-М основан на эффекте Холла. Магнитная индукция измеряемого постоянного магнитного поля в датчике Холла преобразуется в электрический сигнал, который вызывает перемещение стрелки показывающего прибора. Угол отклонения стрелки прямо пропорционален величине индукции магнитного поля.

Конструкция измерителя ИМИ-М представляет собой переносной диапазонный прибор с зондом специальной конструкции для измерения индукции магнитного поля. В корпусе установлен показывающий прибор - микроамперметр марки М 1690А. Для защиты от внешних воздействий и удобства измерений преобразователь Холла размещен внутри зонда, выполненного из немагнитного материала. Пластина преобразователя Холла установлена на плоскости тарелки строго по ее центру и закрыта стаканом. Внутри стакана выводы датчика соединены с проводами измерительного кабеля, передающего аналоговые сигналы на измерительную схему, установленную внутри корпуса прибора. Расстояние между пластиной преобразователя Холла и плоскостью полюса магнита равно толщине дна тарелки - 0,6 мм. Тарелка прижата к ручке зонда с помощью гайки. Измерительный кабель зафиксирован внутри зонда крепежным винтом. Камера для установки элементов питания А332 расположена под нижней крыш кой измерителя.


Основные технические характеристики прибора ИМИ-М:

1. Диапазоны измерения: 0…200 мТл, 0…500 мТл, 0…1000 мТл.

2. Основная погрешность в диапазонах:

· 0..200 мТл, 0…500 мТл - +2,5 %

· 0…1000 мТл - +4 %

3. Время успокоения подвижной части прибора - не более 4 сек.

4. Погрешность установки нуля прибора +0,5 %.

5. Масса прибора без упаковки 0,74 кг.

6. Габаритные размеры прибора, не более:
Корпуса 150х150х80 мм,
Зонда Ду 18, длина 80 мм.

7. Источник питания - четыре элемента формата А

Loading...Loading...